|
资源下载
- 数学专栏
- 必修三
- 学案教案
- 人教 - 文章内容
|
|
数学:3.1.3 概率的基本性质教案(新人教A版必修三) |
|
资源分类: |
必修三 |
资源大小: |
85.50 KB |
资源版本: |
人教 |
上传:吕秋梅 |
审核发布:gswen |
下载次数: |
8人次 |
下载权限: |
非会员下载
|
下载点数:
|
0点
|
下载地址: |
下载地址 |
|
|
资料简介 |
3.1.3 概率的基本性质(第三课时) 一、教学目标: 1、知识与技能:(1)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念; (2)概率的几个基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B) (3)正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系. 2、过程与方法:通过事件的关系、运算与集合的关系、运算进行类比学习,培养学生的类化与归纳的数学思想。 3、情感态度与价值观:通过数学活动,了解教学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习 数学的情趣。 二、重点与难点:概率的加法公式及其应用,事件的关系与运算。 三、学法与教学用具:1、讨论法,师生共同讨论,从而使加深学生对概率基本性质的理解和认识;2、教学用具:投灯片 四、教学设想: 1、 创设情境:(1)集合有相等、包含关系,如{1,3}={3,1},{2,4}С{2,3,4,5}等; (2)在掷骰子试验中,可以定义许多事件如:C1={出现1点},C2={出现2点},C3={出现1点或2点},C4={出现的点数为偶数}…… 师生共同讨论:观察上例,类比集合与集合的关系、运算,你能发现事件的关系与运算吗? 2、 基本概念:(1)事件的包含、并事件、交事件、相等事件见课本P115; (2)若A∩B为不可能事件,即A∩B=ф,那么称事件A与事件B互斥; (3)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件; (4)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B). 3、 例题分析: 例1 一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件? 事件A:命中环数大于7环; 事件B:命中环数为10环; 事件C:命中环数小于6环; 事件D:命中环数为6、7、8、9、10环. 分析:要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚,互斥事件是指不可能同时发生的两事件,而对立事件是建立在互斥事件的基础 |
|
|
|
|