教学目标:
完全平方公式的推导及其应用.完全平方公式的几何解释.视学生对算理的理解,有意识地培养学生的思维条理性和表达能力.
教学重点:
完全平方公式的推导过程、结构特点、几何解释,灵活应用
教学过程设计:
设计意图 |
第一课时
(一)提出问题,学生自学
1.问题:根据乘方的定义,我们知道:a2=a·a,那么(a+b)2 应该写成什么样的形式呢?(a+b)2的运算结果有什么规律?计算下列各式,你能发现什么规律?
(1)(p+1)2=(p+1)(p+1)=_______; (m+2)2=_______;
(2)(p-1)2=(p-1)(p-1)=________; (m-2)2=_______;
2.学生探究【1】
3.得到结果:(1)(p+1)2=(p+1)(p+1)=p2+2p+1
(m+2)2=(m+2)(m+2)= m2+4m+4
(2)(p-1)2=(p-1)(p-1)= p2-2p+1
(m-2)2=(m-2)(m-2=m2-4m+4
4.分析推广:结果中有两个数的平方和,而2p=2·p·1,4m=2·m·2,恰好是两个数乘积的二倍。(1)(2)之间只差一个符号。
推广:计算(a+b)2=_____ ___ (a-b)2=_____ ___ 【2】
(二)得到公式,分析公式
1.结论: (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 即:
两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.
2.几何分析:【3】
图(1),可以看出大正方形的边长是a+b,它是由两个小正方形和两个矩形组成,所以大正方形的面积等于这四个图形的面积之和.【4】
(三)运用公式
| |