返回主站 | 设为首页 | 加入收藏 | 网站帮助 | 上传资料
用户名:
密码:
验证码:
取回密码>>
首页   |  必修一   |  必修二   |  必修三   |  必修四   |  必修五   |  选修   |  高考   |  学业水平   |  中考   |  七上   |  七下   |  八上   |  八下   |  九上   |  九下   |  小学资源
资讯 | 学案教案 | 同步课件 | 同步试卷 | 名校月考 | 仿真模拟 | 真题汇编 | 名题精解 | 快乐探究 | 视听教学 | 快乐助记 | 快教园地 | 综合荟萃
  资源下载 - 数学专栏 - 高考 - 高考一轮 - 人教 - 文章内容
高三数学第一轮复习单元讲座第3讲函数的基本性质(人教版)
资源分类: 高考 资源大小: 469.00 KB
资源版本: 人教 上传:朱启敏 审核发布:啊杜
下载次数: 59人次 下载权限: 非会员下载
下载点数: 0 下载地址: 下载地址

 

资料简介

高三数学(人教版)第一轮复习单元讲座

3   函数的基本性质

一.课标要求

1.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;

2.结合具体函数,了解奇偶性的含义;

二.命题走向

从近几年来看,函数性质是高考命题的主线索,不论是何种函数,必须与函数性质相关联,因此在复习中,针对不同的函数类别及综合情况,归纳出一定的复习线索。

预测今年高考的出题思路是:通过研究函数的定义域、值域,进而研究函数的单调性、奇偶性以及最值。

预测明年的对本讲的考察是:

1)考察函数性质的选择题1个或1个填空题,还可能结合导数出研究函数性质的大题;

2)以中等难度、题型新颖的试题综合考察函数的性质,以组合形式、一题多角度考察函数性质预计成为新的热点。

三.要点精讲

1.奇偶性

1)定义:如果对于函数f(x)定义域内的任意x都有f(x)=f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(x)=f(x),则称f(x)为偶函数。

如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。

注意:

1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;

2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)。

2)利用定义判断函数奇偶性的格式步骤:

1 首先确定函数的定义域,并判断其定义域是否关于原点对称;

2 确定f(x)f(x)的关系;

3 作出相应结论:

f(x) = f(x) f(x)f(x) = 0,则f(x)是偶函数;

f(x) =f(x) f(x)f(x) = 0,则f(x)是奇函数。

3)简单性质:

①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y轴对称;

的定义域分别是,那么在它们的公共定义域上:

+=奇,奇=偶,偶+=偶,偶=偶,奇=

评论区  
当前1/1  首页  前一页  后一页  最末页 直接到 页  共 0 条记录
 

  

推荐资源
人教最新版高中数学必修二同步测....
人教最新版高中数学必修四教学设....
席俊雄数学名师工作室高中数学必....
人教最新版高中数学必修五教学设....
人教最新版高中数学必修二教学设....
席俊雄数学名师工作室高中数学必....
人教版数学七下随堂优化训练、单....
人教版数学七下随堂优化训练、单....
人教版数学八下随堂优化训练、单....
人教版数学八下随堂优化训练、单....
人教版数学九下随堂优化训练、单....
2015春人教版数学九年级下册....
热门资源
新人教版A高中数学必修1第一章....
巧用顺口溜熟记初中数学公式和规....
一年级数学上册第六单元(6~1....
新人教A版高中数学必修5《2.....
视频课堂:准确把握“集合与逻辑....
二年级数学上册第五单元测试卷(....
新人教A版高中数学必修4《1.....
新人教A版高中数学必修4《1.....
新人教A版高中数学必修4《1.....
新人教A版高中数学必修5《1.....
新人教A版高中数学必修4《1.....
新人教A版高中数学必修4《2.....
[上一篇]高三数学第一轮复习单元讲座第2讲函数概念与表示(人教版)
[下一篇]云南2011届高三数学一轮复习立体几何基础题题库一
[关闭窗口]
 
关于我们   |   联系我们   |   版权说明   |   后台管理   |   在线联系

通讯地址: 湖南省永州市东安县文生路11号 (425900)邮箱:lzm6308@163.com 联系QQ:534386438或386911242
Copyright © 2008-2012 klxkc.com All Rights Reserved.  湘ICP备10027478号

技术支持:广州市今鼎科技