第9课时 函数与方程
1.一元二次函数与一元二次方程
一元二次函数与一元二次方程(以后还将学习一元二次不等式)的关系一直是高中数学函数这部分内容中的重点,也是高考必考的知识点.我们要弄清楚它们之间的对应关系:一元二次函数的图象与轴的交点的横坐标是对应一元二次方程的解;反之,一元二次方程的解也是对应的一元二次函数的图象与轴的交点的横坐标.
2.函数与方程
两个函数与图象交点的横坐标就是方程的解;反之,要求方程的解,也只要求函数与图象交点的横坐标.
3.二分法求方程的近似解
二分法求方程的近似解,首先要找到方程的根所在的区间,则必有,再取区间的中点,再判断的正负号,若,则根在区间中;若,则根在中;若,则即为方程的根.按照以上方法重复进行下去,直到区间的两个端点的近似值相同(且都符合精确度要求),即可得一个近似值.
例1.(1)若,则方程的根是( )
A. B.- C.2 D.-2
解:A.
(2)设函数对都满足,且方程恰有6个不同的实数根,则这6个实根的和为( )
A.0 B.9 C.12 D.18
解:由知的图象有对称轴,方程的6个根在 轴上对应的点关于直线对称,依次设为,故6个根的和为18,答案为D.
|