§4.2 简单线性规划(1)
宜黄县安石中学 万 杰
教学目标:1.了解线性规划的意义及线性约束条件、线性目标函数、可行解、可行域、最优解等概念;
2.能根据条件建立线性目标函数;
3.了解线性规划问题的图解法,并会用图解法求线性目标函数的最大值、最小值.
教学重、难点:线性规划问题的图解法;寻求线性规划问题的最优解.
教学过程:
(一)复习练习:
画出下列不等式表示的平面区域:
(1); (2).
(二)新课讲解:
在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题。
1、下面我们就来看有关与生产安排的一个问题:
引例:某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h计算,该厂所有可能的日生产安排是什么?
(1)用不等式组表示问题中的限制条件:
设甲、乙两种产品分别生产x、y件,又已知条件可得二元一次不等式组:
……………………………………………….(1)
(2)画出不等式组所表示的平面区域:
如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排。
(3)提出新问题:
进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?
(4)尝试解答:
设生产甲产品件,乙产品件时,工厂获得的利润为,则,这样,上述问题就转化为:当满足不等式(1)并且为非负整数时,z的最大值是多少? 把变形为 |