《从位移、速度、力到向量》的教案说明
江西省南康中学
1 设计理念
《数学课程标准》明确指出:有效的数学学习活动不能单纯地模仿与记忆,动手实践、自主探索与合作交流,可以促进学生自主、全面、可持续的发展,是学生学习数学的重要方式.为使教学真正做到以学生为本,我对教材的知识进行了适当地重组和加工,力求给学生提供研究、探讨的时间与空间,让学生充分经历“做数学”的过程,促使学生在自主中求知,在合作中获取,在探究中发展.
2 授课内容的的内涵与外延
向量是近代数学中重要的、基本的数学概念,它是沟通代数、几何与三角函数的一种工具.它既是代数的对象,又是几何的对象.向量作为代数对象,可以像数一样进行运算,作为几何对象,向量有方向,可以刻画直线、平面、切线等几何对象;向量有长度,可以解决有关几何对象的长度、面积、体积等几何度量问题.向量由大小和方向两个因素确定,大小反映了向量数的特征,方向反映了向量形的特征,因此,向量是集数、形于一身的数学概念,是数学中数形结合思想的典型体现.
向量是刻画现实世界的重要数学模型,有着非常丰富的实际背景,在现实生活中随处可见的位移、速度、力等物理概念和实例都是向量的实际背景,几何中的有向线段是它的几何背景.向量就是从这些实际对象中抽象概括出来的数学概念,经过研究,建立起完整的知识体系之后,向量又作为数学模型,广泛地应用于解决数学、物理学科及实际生活中的问题.因此,作为《平面向量》一章的第一节课,从平面向量的实际背景和几何背景出发引入向量概念既符合向量知识形成的实际过程,也符合人们的认知规律.此外,从学生熟悉的生活实例出发来建立平面向量的概念,学生会有一种亲切感,有助于激发他们的学习兴趣,调动其学习的积极性;有助于他们认识数学的价值,培养他们数学应用的意识,同时也为今后向量的应用奠定基础. |