解方程或方程组是同学们最熟悉的,但利用方程(组)解应用题,就感到有点困难,特别是近年来中考题中应用题的取材大都来自现实生活,数据真实,同学们就更感困难。
传统的方程应用题语句简短,数字简单,类型明显,数量关系比较明确,列方程(组)比较容易。但中考中的方程应用题往往涉及到日常生活、生产实践、经济活动、社会发展中的有关常识,因此解这类题时,首先要耐心地阅读题目,弄清楚题目中叙述的背景知识,一遍读不懂就再读一遍,将题目浓缩、读“短”。同时要边阅读、边思考,找到关键词语、关键数量,再借用做传统应用题的方法(如列表法、图示法等)分析这些数量之间的关系,找到等量关系,建立方程(组)。由于数据是来自实际情况,不是人为编造的,所以有时数据较复杂,这时可以利用科学计算器进行计算;当数据很大或很小时,可以利用科学记数法来表示数据,再进行计算,结果也可用科学记数法表示。
对于求出的求知数的值,应根据问题的实际意义,检查它们是否符合题意,才能确定问题的解.
由于实际问题的复杂性,近年来的方程应用题开始与不等式联系起来,在一道题中既要列方程(组),又要列不等式(组),这就增加了试题的难度,需要细心分析数量间的关系,确定选用的数学模型。
例1、某灯具店采购了一批某种型号的节能灯,共用去400元.在搬运过程中不慎打碎了5盏,该店把余下的灯以每盏比进价多4元的价格全部售出,然后用所得的钱又采购了一批这种节能灯,且进价与上次相同,但购买的数量比上次多了9盏.求每盏灯的进价。
分析一:(1)简述题目所叙述的事件:先买灯,再卖灯,然后用卖灯的钱全部买灯.
(2)用列表法将数据之间的关系表示出来(设每盏灯的进价为x元):
|
进价(元) |
进货款(元) |
进货盏数 |
售价(元) |
售出盏数 |
售货款 | |