活动1:
1.我们以前学过函数,函数是用来描述一个量与另一个量之间的对应关系的,大家回忆一下,我们到现在都学过哪些函数?
2.请描述一下你对一次函数、反比例函数是如何理解的.
3.在现实生活中,我们除了接触到一次函数、反函数,我们还会遇到另外一种函数——二次函数,现在我们就来认识二次函数.
活动2:
我们看引言中正方体的表面积的问题.
正方体的六个面是全等的正方形(图26.1–1),设正方体的棱长为x,表面积为y,显然对于x的每一个值,y都有一个对应值,即y是x的函数,它们的具体关系可以表示为
y=6x2①
我们再来看几个问题.
问题1 多边形的对角线数d与边数n有什么关系?
问题2 某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎么样表示?
小组讨论,引导学生找出其中的量与量之间的关系,列出函数式.
活动3:解析
问题1 由图26.1–2可以想出,如果多边形有n条边,那么它有________个顶点.从一个顶点出发,连接与这点不相邻的各顶点,可以作_________条对角线.
因为像线段MN与NM那样,连接相同两顶点的对角线是同一条对角线,所以多边形的对角线总数
,
即
.②
②式表示了多边形的对角线数d与边数n之间的关系,对于n的每一个值,d都有一个对应值,即d是n的函数.
问题2 这种产品的原产量是20件,一年后的产量是_________件,再经过一年后的产量是_________件,即两年后的产量为
y=20(1+x)2,
即
y=20x2+40x+20.③
③ 式表示了两年后的产量y与计划增产的倍数x之间的关系,对于x的每一个值,y都有一个对应值,即y是x的函数.
活动4:观察
函数①②③有什么共同点?与我们已学过的正比例函数,反比例函数和一次函数有什么不同?
在上面的问题中,函数都是用自变量的二次式表示的.一般地,形如
y=ax2+bx+c(a,b,c是常数,a≠0)
的函数,叫做二次函数(quadratic function).其中,x是自变量,a,b,c分别是函数表达式的二次项系数、一 次项系数和常数项.
现在我们学习过的函数有:一次函数y=ax+b(a≠0),其中包括正比例函数y=kx(k≠0),反比例函数和二次函数y=ax2+bx+c(a≠0).
可以发现,这些函数的名称都反映了函数表达式与自变量的关系.
活动5:练习
1.一个圆柱的高等于底面半径,写出它的表面积S与半径r之间的关系式.
2.n支球队参加比赛,每两队之间进行一场比赛.写出比赛场次数m与球队数n之间的关系式.
活动6:小结
学生讨论,总结出本节所学的知识.
|