第1课时 向量的概念与几何运算
1.向量的有关概念
⑴ 既有 又有 的量叫向量.
的向量叫零向量. 的向量,叫单位向量.
⑵ 叫平行向量,也叫共线向量.规定零向量与任一向量 .
⑶ 且 的向量叫相等向量.
2.向量的加法与减法
⑴ 求两个向量的和的运算,叫向量的加法.向量加法按 法则或 法则进行.加法满足 律和 律.
⑵ 求两个向量差的运算,叫向量的减法.作法是将两向量的 重合,连结两向量的 ,方向指向 .
3.实数与向量的积
⑴ 实数与向量的积是一个向量,记作.它的长度与方向规定如下:
① | |= .
② 当>0时,的方向与的方向 ;
当<0时,的方向与的方向 ;
当=0时, .
⑵ (μ)= .
(+μ)= .
(+)= .
⑶ 共线定理:向量与非零向量共线的充要条件是有且只有一个实数λ使得 .
4.⑴ 平面向量基本定理:如果、是同一平面内的两个不共线的向量,那么对于这一平面内的任一向量,有且只有一对实数、,使得 . ⑵ 设、是一组基 |