2.1数列的概念与简单表示法
(一)教学目标
1、知识与技能:了解数列的概念和几种简单的表示方法(列表、图象、通项公式);了解数列是一种特殊的函数;
2、过程与方法:通过三角形数与正方形数引入数列的概念;通过类比函数的思想了解数列的几种简单的表示方法(列表、图象、通项公式);
3、情态与价值:体会数列是一种特殊的函数;借助函数的背景和研究方法来研究有关数列的问题,可以进一步让学生体会数学知识间的联系,培养用已知去研究未知的能力。
(一)教学重、难点
重点:理解数列的概念,认识数列是反映自然规律的基本数学模型,探索并掌握数列的几种间单的表示法(列表、图象、通项公式);
难点:了解数列是一种特殊的函数;发现数列规律找出可能的通项公式。
(二)学法与教学用具
学法:学生以阅读与思考的方式了解数列的概念;通过类比函数的思想了解数列的几种简单的表示方法;以观察的形式发现数列可能的通项公式。
教学用具:多媒体、投影仪、尺等
(三)教学设想
1、多媒体展示三角形数、正方形数,提问:这些数有什么规律?与它所表示的图形的序号有什么关系?
2、(1)概括数列的概念:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项。
(2)辩析数列的概念:“1,2,3,4,5”与“5,4,3,2,1”是同一个数列吗?与“1,3,2,4,5”呢?给出首项与第n 项的定义及数列的记法:{an}
(3)数列的分类: 有穷数列与无穷数列;递增数列与递减数列,常数列。
3、数列的表示方法
(1)函数y=7x+9 与y=3 x ,当依次取1,2,3,…时,其函数值构成的数列各有什么特点?
(2)定义数列{an}的通项公式
(3)数列{an}的通项公式可以看成数列的函数解析式,利用一个数列的通项公式,你能确定这个数列的哪些方面的性质?
(4)用列表和图象等方法表示数列,数列的图象是一系列孤立的点。 4、例1 写出下面数 |