§2.1函数的概念
教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.
教学目的:(1)在上一小节学习的基础上理解用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;
(2)了解构成函数的要素;
(3)会求一些简单函数的定义域和值域;
(4)能够正确使用“区间”的符号表示某些函数的定义域;
教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;
教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;
教学过程:
一.引入课题
复习初中所学函数的概念,强调函数的模型化思想。
思考: (1) y=1(x∈R)是函数吗?
(2) y=x与y= 是同一函数吗?
几百年来,随着数学的发展,对函数概念的理解不断深入,对函数概念的描述越来越清晰。现在,我们从集合的观点出发,还可以给出以下的函数定义。
(先认识几个对应)
二.新课教学
(一)函数的有关概念
1.函数的概念:
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.
记作: y=f(x),x∈A.
其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.
注意:
1 “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
2 函数符号“y=f(x)”中的f(x)表示与x对应的函数值,是一个数,而不是f乘以x.
③ 两个函数相同必须是它们的定义域和对应关系分别完全相同.
④有时给出的函数没有明确说明定义域,这时它的定义域就是自变量的允许取值范围.
2. 构成函数的三要素: |