【学习目标】1、了解两点间距离公式的推导过程;熟练掌握两点间的距离公式、中点公式;2、灵活运用两点间的距离公式 和中点公式解题;
【重点难点】两点间的距离公式中点公式
【学法指导】化归
学习过程
思考1:在x轴上,已知点P1(x1,0)和P2(x2,0),那么点P1和P2的距离为多少?
思考2:在y轴上,已知点P1(0,y1)和P2(0,y2),那么点P1和P2的距离为多少?
思考3:已知x轴上一点P1(x0,0)和y轴上一点P2(0,y0),那么点P1和P2的距离为多少?
思考4:在平面直角坐标系中,已知点A(x,y) ,原点O和点A的距离d(O,A)
思考5:一般地,已知平面上两点A(x1,y1)和B(x2,y2),利用上述方法求点A和B的距离
1、公式:A(x1,y1)、B(x2,y2)两点间的距离,用d(A,B)表示为
【例1】已知A(2、-4)、B(-2,3). 求d(A,B)
【例2】已知:点A(1,2),B(3,4),C(5,0) 求证:三角形ABC是等腰三角形。
\
练习:已知:A(1,1)B(5,3)C(0,3)求证:三角形ABC是直角三角形 |