教学目标
1.能够根据具体问题中数量关系,列出一元一次不等式组,解决简单问题。
2.渗透“数学建模”思想。最优化理论。
3.提高分析问题解决问题能力。
教学重点
分析实际问题列不等式组。
教学难点
1.找实际问题中的不等关系列不等式组。
2.有条理的表达思考过程。
教学过程
一、 创设问题情境:
本节课我们一起学习用一元一次不等式组 解决一些简单的实际问题。
出示问题:
某公园售出一次性使用门票,每张10元。为吸引更多游客,新近推出购买“个人年票”的售票方法。年票分A、B两类。A类年票每张100元,持票者每次进入公园无需再购买门票。B类年票每张50元,持票者进入公园时需再购买每次2元的门票。你能知道某游客一年中进入该公园至少超过多少次,购买A类年票最合算吗?
二、 建立模型:
1. 分析题意回答:
① 游客购买门票,有几种选取择方式?
② 设某游客选取择了某种门票,一年进入该公园x次,门票支出是多少?
③ 买A类年票最合算,应满足什么关系?
2. 讨论交流,列出不等式组。
3. 解不等式组,说出问题的答案。
三、 应用:
学生讨论 、交流。
1. 什么情况下,购买每次10元的门票最合算。
2. 什么情况下,购买B类年票最合算?
学生清晰、有条理地表达自己的思考过程,且考虑问题要全面。
四、 练习:
某校安排寄宿时,如果每项间宿舍住7人,那么有1间虽有人住,但没住满。如果每间宿舍住4人,那么有100名学生住不下。问该校有多少寄宿生?有多少间宿舍?
(提示学生找到本题中的两个不等关系。学生人数,宿舍间数都为整数。解本题时,先独立思考,再小组交流)
五、 小结
列一元一次不等式组,解决实际问题的基本步骤是什么?(讨论、交流,指名回答) |