高三数学第二轮专题复习系列(8)-- 圆锥曲线
一、知识结构
1.方程的曲线
在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:
(1)曲线上的点的坐标都是这个方程的解;
(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫 做方程的曲线.
点与曲线的关系 若曲线C的方程是f(x,y)=0,则点P0(x0,y0)在曲线C上f(x0,y 0)=0;
点P0(x0,y0)不在曲线C上f(x0,y0)≠0
两条曲线的交点 若曲线C1,C2的方程分别为f1(x,y)=0,f2(x,y)=0,则
f1(x0,y0)=0
点P0(x0,y0)是C1,C2的交点
f2(x0,y0) =0
方程组有n个不同的实数解,两条曲线就有n个不同的交点;方程组没有实数解,曲线就没有 交点.
2.圆
圆的定义
点集:{M||OM|=r},其中定点O为圆心,定长r为半径.
圆的方程
(1)标准方程
圆心在c(a,b),半径为r的圆方程是
(x-a)2+(y-b)2=r2
圆心在坐标原点,半径为r的圆方程是
x2+y2=r2
(2)一般方程
当D2+E2-4F>0时,一元二次方程
x2+y2+Dx+Ey+F=0
叫做圆的一般方程,圆心为(-,-,半径是.配方,将方程x2+y2+Dx+Ey+F=0化为 (x+ |