教学目标
1、从感性上认可无理数的存在,并通过探索说出无理数的特征,弄清有理数与无理数的本质区别,了解并掌握无理数、实数的概念以及实数的分类,知道实数与数轴上的点的一一对应关系。
2、让学生体验用有理数估计一个无理数的大致范围的过程,掌握 “逐次逼近法”这种对数进行分析、猜测、探索的方法
3、培养学生勇于发现真理的科学精神,渗透“数形结合”及分类的思想和对立统一、矛盾转化的辨证唯物主义观点.
重点 无理数、实数的意义,在数轴上表示实数。
难点 无理数与有理数的本质区别,实数与数轴上的点的一一对应关系。
教具准备 多媒体,投影仪
教学过程
1、复习旧知,揭示矛盾,引入概念
回顾书本 3 .1探究活动(图3.2),复习前面所学的有理数的分类, 既然在1与2之间就不是整数,也不是分数,因为如果是分数的话它的平方也应是分数,也就是说 不是有理数,但由此题可知确实是存在的,同时π也是如此。
出现矛盾以后,本课以为例,从开始,来探索无理数的特征,学习实数。
2联系实际创设问题情境: 如果你是布料销售店的售货员,假设我要买剪米布,你将会给我剪多少比较合适?学生能从上节的图3-2中估计在1与 |