【教学目的】
1、 通过逻辑推理和对实验的观察和分析,使学生在电磁感应知识的基础上理解自感现象的产生的它的规律,明确自感系数的意义和决定条件
2、 通过分析理解在自感现象中能量形式的转化情况,为进一步学习电磁振荡打下基础
3、 通过对两个自感实验的观察和讨论,培养学生的观察能力和分析推理能力
4、 日光灯的原理
【重点难点】
重点:使学生在掌握了自感现象与电磁感应现象统一性的基础上,把握自感现象的特点。
难点:断电自感现象中,灯泡突然闪亮一下学生很难理解,是教学中的难点。
【教具】电源(6V)、导线、带闭合铁芯的线圈、电键、灯泡等
【教学过程】
○、复习&引入
师:上节课提到了几种不同形式的电磁感应现象,你们认为引起电磁感应现象最重要的条件是什么?
☆生:穿过电路的磁通量发生变化
师:对!不论采用什么方式,只要能使穿过电路的磁通量发生变化,均能引起电磁感应现象。
1、 揭示现象,提出问题
[实验]:(6V电源,A、B为裸露铜线,L为带闭合铁芯的线圈)
提出问题:在A、B触点断开瞬间,A、B间的高压从何而来?
2、 分析现象,建立概念
在上图所示的电路中,当电键K搭接后,线圈中存在稳定的电流I,线圈内部铁心中存在很强的磁场,穿过线圈的磁通量很大;在电键K断开瞬间,在很短的时间内,线圈中的电流迅速减小到零,穿过线圈的磁通量也迅速减小到零,磁通量的变化量虽然不是很大。但由于时间很短,在电键K由接通至断开瞬间,对于线圈来说,在线圈上产生了很高的感生电动势,这就是引起试验学生强烈触电感觉的高压的来源。
上述现象属于一种特殊的电磁感应现象,其中穿过电路磁通量的变化是由于通过导体本身的电流发生变化而引起的。这种由于导体本身的电流发生变化而产生的电磁感应现象,叫做自感现象。在自感现象中产生的感应电动势,叫做自感电动势。(板书)
3、 演示现象,强化概念(课本上的实验)
总结1:电路接通时,电流由零开始增加,L支路中感应电流方向与原来电流方向相反,阻碍电流的增加,即推迟了电流达到正常值的时间(见上左图)。启发学生说出这时L相当于瞬时电源(将原电流方向及自感电流的方向在力中标出) |