导数与微分是在极限的基础上发展起来的研究变量的一个数学分支,是解决实际问题的重要的数学工具。如求曲线的切线方程、函数的单调区间、函数的最值以及不等式的证明等问题,均可以导数作为研究的工具,根据导数的意义进行求解和证明。关于导数的应用,我们将分两个讲座研究,分别是函数问题和切线与速度的问题。
一、利用导数研究函数的单调性
若函数在某个区间内可导,则当时,在此区间上为单调增函数;而当时,在此区间上为单调减函数。利用上述性质,可以研究函数的单调性。
注意点:
(1)同一函数的两个单调区间不能并起来
(2)求函数的单调区间,求导的方法不是唯一的方法,也不一定是最好的方法,但它是一种一般性的方法。
二、利用导数求函数的最值
求闭区间上的可导函数的最大(小)值的方法是:首先求出此函数在开区间内的驻点,然后计算函数在驻点与端点处的值,并将它们进行比较,其中最大的一个即为最大值,最小的一个即为最小值,这里无须对各驻点讨论其是否为极大(小)值点。
如果函数不在闭区间上可导,那么求函数的最大(小)值时,不仅要比较此函数在各驻点与端点处的值,还要比较函数在定义域内各不可导的点处的值。
一般地,求在闭区间上连续,在开区间内可导的函数在闭区间上最值的步骤为: |