3.1.1平行四边形的性质和中心对称图形(2)
教学目标
1 使学生进一步掌握平行四边形的性质-----平行四边形的对角线相等.
2 了解中线对称图形的概念,知道平行四边形是中心对称图形.
教学重点、难点:
重点:平行四边形与对角线有关的性质以及理解中心对称图形的概念.
难点:平行四边形性的运用以及中心对称图形的概念的理解
教学过程
一创设情景,导入新课
1 复习:
(1)什么叫平行四边形?
有两组对边分别平行的四边形叫平行四边形.
(2)怎样理解这个概念呢?
从概念知道:一方面,如果一个四边形是平行四边形那么这个四边形的对边一定平行.另一方面,要判断一个四边形是平行四边形,只要判定这个四边形的两组对边分别平行就可以了.
(3) 平行四边形有什么性质?
平行四边形的对边相等, 对角相等.
(4)这个性质是利用什么道理得到的?
利用全等三角形的性质得到的
A ∵四边形ABCD是平行四边形,∴AD∥BC,AB∥DC
∴∠1=∠3, ∠2=∠4,
又∵AC=CA, ∴△ABC≌△CDA
∴AB=CD,AD=BC
B ∵△ABC≌△CDA,∴∠B=∠D,
∵∠1=∠3, ∠2=∠4, ∴∠1+∠2=∠3+∠4,即:∠BAD=∠BCD
平行四边形还有什么性质呢?这节课我们继续学习-----3.1.1平行四边形的性质和中心对称(2)
二合作交流,探究新知
1 平行四边形对角线具有的性质
探究活动:
(1)量一量P 72 图3-10中的线段OA、OC、OB、OD的长,并比较OA、OC、OB、OD的大小,由此你能得到什么结论?
估计学生会想到:(1)平行四边形的对角线互相平分,(3)平行四边形的对角线的交点是每条对角线的中点.(3)平行四边的对角线不一定相等.
(2)你知道平行四边形的对角线为什么互相平分吗?
∵四边形ABCD是平行四边形,∴AD∥BC,AB∥DC
∴∠1=∠3, ∠2=∠4,
又∵AC=CA, ∴△ABC≌△CDA
∴OA=OC,OB=OD
(3)请你用语言把平行四边形的这条性质叙说出来.
平行四边形的对角线互相平分.
即:如果四边形ABCD是平四边形,那么OA=OC,OB=OD.
2 中心对称图形的概念
做一做: |