第3课时 整式(运算、公式)
【复习要点】
1、整式分式单项式和多项式; 叫做单项式,单项式的系数指的是 ,单项式的次数是 之和; 叫做多项式,组成多项式的每个 叫做多项的项,其中 叫做常数项,(注意多项式中的项包括前面所带的符号)多项式的次数指的是 ,所以多项式有几项几次式的说法。
2、合并同类项:所含字母 ,并且 字母的指数也分别 的单项式叫做同类项,几个常数项也是同类项;把多项式中的同类项 ,叫做合并同类项;合并同类项的法则是:各同类项的字母因式 ,把各个同类项的 作为 。
3、去括号与添括号:去括号时,若括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都 变号;若括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项都 变号。
添括号时,若括号前面是“+”号,括到括号里的各项都 变号;若括号前面是“—”号,括到括号里的各项都 变号。
4、整式的加减法:即是合并 ,如有括号,应先去括号,再合并 。
5、同底数幂的乘法:底数 ,指数 。即:am·an= ______。
6、同底数幂的除法:底数 ,指数 。即:am÷an=_______(a≠0)。
7、幂的乘方:底数 ,指数 。即:(am)n=______。
8、积的乘方:先把积的各个因式分别 ,再把所得的结果 ,即:(ab)n=_______。
9、单项式乘以单项式:系数 ,同底数幂 ,再把所得结果相乘;
10、单项式除以单项式:系数 ,同底数幂 ,再把所得结果相乘。
11、单项式与多项式的乘法: 把单项式同多项式的 相乘,再把所的结果 。 |